Waterline Treatment Effect on Enamel and Dentin Bonding to Composite

N. KASHANI, W.C. WAGNER, and J. VITALE,
University of Detroit Mercy, Detroit, MI, USA

Abstract

Waterline treatments may be necessary to prevent bacterial growth in dental units. There has been concern that waterline treatments could inhibit bonding of restorations. **Objective:** Aim of this study was to determine whether BluTab waterline treatment changes the bond strength of OptiBond Solo Plus with Point 4 Composite to dentin and enamel. **Method:** Forty sectioned tooth samples were mounted in acrylic resin. Twenty were ground to expose enamel. Twenty were ground to expose dentin. All samples were finished with 1µm diamond polish and ultrasonic cleaned. Ten of the enamel samples were used with distilled water rinse (Enamel Control - EC) and the other ten were used with the BluTab waterline solution (EB). Dentin samples were treated in the same way with ten designated DC (control) and ten DB (Bluetab). Etching and bonding procedures were as the manufacture recommended; however, rinsing after etching was done with either distilled water or the BlueTab solution. Cylindrical silicone molds were placed over samples and composite was placed and cured. This allowed samples to have a consistent bonding area and geometry (3.2mm diameter, 5mm high). After storage in 100% humidity for 48hrs they were tested using a universal mechanical testing machine. Planar shear loading was applied at 1mm/min using a knife-edge anvil placed adjacent to the bonded composite. After converting to shear stress the data was subjected to ANOVA to determine if differences between treatments was statistically significant (α=0.05). **Results:** Enamel samples showed no statistical difference whether treated with distilled water or BluTab solution (p=0.18). No statistical differences were observed with dentin samples (p=0.43). Average values for the enamel samples were EC=16.7 and EB=19.5MPa. For the dentin samples the averages were DC=4.0 and DB=3.5MPa. **Conclusion:** There was no statistical difference between enamel or dentin samples prepared using distilled water or BluTab solution.

Introduction

Although a potential risk to the general patient population exists, there has been no major outbreak attributed to a Dental Unit Waterline (DUWL) that would suggest a quantifiable epidemiological risk. However, immuno-compromised patients elderly patients are at greater risk of infection. Dr. GC Blake first reported bacterial
contamination of dental Waterlines in 1963 in Great Britain. In mid 1990s the American
dental association (ADA) organized a panel of experts to explore the waterline safety
issues. The Organization for Safety and Asepsis Procedures (OSAP), the ADA and the
CDC have been working hard ever since to share information and encourage more
research in this area. The ADA addressed the problem in 1996 by issuing the ADA
statement on Dental Unit Waterline, which called for a maximum of 200 colony-forming
bacteria per milliliter of water in unfiltered DUWL output by the year 2000. At present
the CDC and the ADA are focusing on meeting the EPA and American Water Works
Association safe drinking water standard of less than 500 CFU/ml. Currently there are
several ways to improve and maintain the quality of the water in dental units: 1) waterline
flushing and purging before each patient, 2) independent reservoirs, 3) filtration systems,
4) intermittent chemical treatment to disinfect the system, 5) continuous chemical
treatment, and 6) sterile water delivery system.

While continuous chemical control of bacterial contamination is effective,
concerns have been expressed regarding the possible adverse effects on dentin and
enamel bonding. Some previous studies have shown that some waterline treatments do
not affect bond strength, whereas, while other waterline treatments led to diminished
bond strength (Roberts et. al., 2000; Knight et. al., 2001; von Fraunhofer et. al., 2004).
Reports in the literature indicate that some treatments, specially the ones containing
essential oils (Listerine), can have adverse effect on dentin bonding.

This in-vitro study was necessary to determine if a recently developed waterline
treatment (BluTab, ConFirm Monitoring Systems) has an adverse effect on composite
bonding.

Materials and Methods

Forty extracted teeth were selected, cleaned, and cut into two approximately equal
sized halves (using a low speed water cooled diamond saw). All teeth halves were
mounted in acrylic mounting resin. Forty of the mounted teeth halves were ground to
produce a flat in the exposed surfaces in order to expose enamel: (E) group. The other
forty mounted teeth halves were ground further to expose dentin: (D) group. All ground
surfaces were then polished with one-micron diamond polish and then ultrasonic cleaned
in distilled water.

Both the enamel group (E) and the dentin group (D) were each randomly divided
into four treatment groups depending on the medium and the composite bonding system.
The two mediums were: 1) distilled water and 2) BluTab waterline treatment (ConFirm
Monitoring Systems). The BluTab was prepared by dissolving one tablet in 700 ml of
distilled water. The two bonding systems were A) Optibond Solo Plus with Point 4
composite (Kerr) and B) Single Bond Plus with Z100 (3M ESPE). This led to eight
treatment groups: for the enamel group (E1A), (E1B), (E2A), and (E2B) and for the
dentin group (D1A), (D1B), (D2A), and (D2B).
The surfaces were prepared in compliance with each bonding system's directions except the experimental waterline treatment was used, instead of water, for groups (2A) and (2B). A silicone mold made of was placed over the surfaces to contain the composite and form a 3 mm diameter by 5 mm long cylinder attached to the tooth surface. The composite was placed and cured in 2 mm increments following the manufacturer's directions.

The samples were then bond strength tested in the shear mode using a knife-edge loading anvil and an Instron Universal Testing Machine. The shear rate was 1 mm/minute. ANOVA tests were used to determine if differences were statistically significant with $\alpha=0.05$.

Results and Discussion

The BluTab waterline treatment did not cause statistically significant changes in bond strength as compared to the controls in either the Optibond Solo Plus or the Single Bond Plus samples. In addition, neither the enamel nor the dentin samples showed statistical difference in bond strengths between the distilled water and the BluTab treatments.

While bond strength was not affected by the use of the waterline treatment in either material, significant differences in bond strength between the two materials were found in the dentin samples. The Optibond Solo Plus samples showed lower bond strengths than the Single Bond Plus samples with dentin bonding. The Optibond Solo Plus samples showed significantly lower bond strengths in dentin than the enamel.

The differences between the control and the waterline treatment group were not statically significant. However, small non-significant increases in bond strength were found with the enamel bonded samples that had been treated with BluTab.
Optibond Solo Plus
Bond Strength (MPa)

- Enamel
- Dentin

Control
BlueTab
Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optibond Solo Plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enamel/Control</td>
<td>16.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Enamel/BluTab</td>
<td>19.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Dentin/Control</td>
<td>4.0</td>
<td>.9</td>
</tr>
<tr>
<td>Dentin/BluTab</td>
<td>3.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single Bond Plus</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel/Control</td>
<td>16.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Enamel/BluTab</td>
<td>21.2</td>
<td>10.0</td>
</tr>
<tr>
<td>Dentin/Control</td>
<td>12.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Dentin/BluTab</td>
<td>11.8</td>
<td>5.1</td>
</tr>
</tbody>
</table>
ANOVA Table

Type III Sums of Squares

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>1</td>
<td>471.354</td>
<td>471.354</td>
<td>15.302</td>
<td>.0002</td>
</tr>
<tr>
<td>Specimen (Dentin or Enamel)</td>
<td>1</td>
<td>2537.887</td>
<td>2537.887</td>
<td>82.388</td>
<td>.0001</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
<td>61.620</td>
<td>61.620</td>
<td>2.000</td>
<td>.1606</td>
</tr>
<tr>
<td>Material * Specimen</td>
<td>1</td>
<td>328.718</td>
<td>328.718</td>
<td>10.671</td>
<td>.0015</td>
</tr>
<tr>
<td>Material * Specimen * Treatment</td>
<td>2</td>
<td>8.694</td>
<td>4.347</td>
<td>.141</td>
<td>.8686</td>
</tr>
<tr>
<td>Specimen * Treatment</td>
<td>1</td>
<td>102.955</td>
<td>102.955</td>
<td>3.342</td>
<td>.0708</td>
</tr>
<tr>
<td>Residual</td>
<td>92</td>
<td>2833.967</td>
<td>30.804</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependent: Bond Strength (MPa)

ANOVA Statistics

Optibond Solo Plus

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel: Control vs. BluTab</td>
<td>p=0.18</td>
</tr>
<tr>
<td>Dentin: Control vs. BluTab</td>
<td>p=0.43</td>
</tr>
</tbody>
</table>

Single Bond Plus

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel Control vs. BluTab</td>
<td>p=0.28</td>
</tr>
<tr>
<td>Dentin/Control vs. BluTab</td>
<td>p=0.76</td>
</tr>
</tbody>
</table>

(p values less than 0.05 indicate statistically significant differences)

Conclusion

The final results indicate that there was no significant difference between the BluTab solution rinsed samples and the distilled water rinsed samples. This was true for both bonding systems and with both enamel and dentin.
References

Acknowledgements

Partially funded by ConFirm Monitoring Systems.